ONE LOOP TOUCH SCREEN ANALOGUE ADDRESSABLE FIRE ALARM PANEL

INSTALLATION MANUAL
MANUAL SECTIONS

1- SAFETY INFORMATION ... 3

2- PANEL SPECIFICATION ... 6

3- INTRODUCTION TO THE NITTAN EVOLUTION PANEL .. 10

4 - DESIGNING THE SYSTEM .. 18

5 - INSTALLING THE PANEL ... 23

6 - INSTALLING THE DEVICES .. 27

7 - PANEL SET UP ... 34

8 - PROGRAMMING .. 42

9 - DISABLEMENTS .. 56

10 - TEST MODE .. 60

11 - NETWORKING ... 63

12 - FAULT FINDING .. 67

13 - STANDBY BATTERY REQUIREMENTS .. 75

14 - CE INFORMATION .. 77

15 - DOCUMENT MODIFICATION HISTORY ... 78
1- SAFETY INFORMATION

1.1 INSTALLATION INFORMATION..4
1.2 SAFETY PRECAUTIONS DURING NORMAL OPERATION OF PANEL ..4
1.3 BATTERY INFORMATION..4
1.4 PRODUCT DISPOSAL AT THE END OF ITS WORKING LIFE ..4
1.5 USING THIS MANUAL...5
1.6 FIRE ALARM SYSTEMS CODE OF PRACTICE..5
1.7 EQUIPMENT WARRANTY...5
1.1 INSTALLATION INFORMATION

THIS FIRE ALARM CONTROL PANEL IS CLASS 1 EQUIPMENT AND MUST BE EARTHED.
This equipment must be installed and maintained by a qualified and technically experienced person.
This C.I.E. must be wired to a fused spur rated at 3A. It must NOT be connected via a removable plug, or be connected through an RCD device.

It is designed for indoor use only.

Prior to commencing installation of the control panel, ensure that adequate precautions are taken to prevent damage to the sensitive electronic components on the display board and the control board due to electrostatic discharge. You should discharge any static electricity you may have accumulated by touching a convenient earthed object such as an unpainted copper radiator pipe. You should repeat the process at regular intervals during the installation process, especially if you are required to walk over carpets.

The panel must be located in a clean, dry position, which is not subject to excessive shock or vibration and at least 2 metres away from pager systems or any other radio transmitting equipment. The operating temperature range is 0ºC to 40ºC; maximum humidity is 95%.

HANDLING THE PCBs
If the PCBs are to be removed to ease fitting the enclosure and cables, care must be taken to avoid damage by static. The best method is to wear an earth strap, but touching any earth point (e.g. building plumbing) will help to discharge any static. Always handle PCBs by their sides and avoid touching the legs of any components. Keep the PCBs away from damp dirty areas, e.g. in a small cardboard box.

1.2 SAFETY PRECAUTIONS DURING NORMAL OPERATION OF PANEL

NOTE: When the Nittan evolution panel is operating normally, i.e. not being tended by service personnel, the panel enclosure must be kept closed, secured by the supplied hex screws. The hex key to open the cover MUST be removed and ONLY held by the responsible person and / or the service personnel. It must under NO CIRCUMSTANCES be held by the user.

1.3 BATTERY INFORMATION

This C.I.E. uses 2 x 12V Sealed Lead Acid (SLA) batteries with capacities between 3Ah and 7Ah.

CAUTION:
RISK OF EXPLOSION IF BATTERY IS REPLACED BY AN INCORRECT TYPE. DISPOSE OF USED BATTERIES ACCORDING TO BATTERY MANUFACTURERS INSTRUCTIONS.

IMPORTANT NOTES ON BATTERIES:
DANGER: Batteries are electrically live at all times. NEVER short circuit the battery terminals.
WARNING: Batteries are often heavy. Take great care when lifting and transporting batteries.

DANGER: Do NOT attempt to remove the battery lid or tamper with the internal workings of the battery. Electrolyte is a highly corrosive substance, and presents significant danger to yourself and to anything else it touches. In case of accidental skin or eye contact, flush the affected area with plenty of clean, fresh water and seek immediate medical attention. Valve Regulated Lead Acid (VRLA) batteries are “low maintenance”, requiring no electrolyte top-up or measurement of specific gravity.

1.4 PRODUCT DISPOSAL AT THE END OF ITS WORKING LIFE

Like all electronic equipment, at the end of its working life this unit should not be disposed of in a refuse bin. All Nittan products since 2005 have been marked with the WEEE Logo in compliance with European Directive 2002/96/EC and Nittan Europe Limited is a member of a WEEE Compliance Scheme. Contact sales@nittan.co.uk for a copy of our WEEE Compliance Policy.
1.5 USING THIS MANUAL

This manual explains, in a step-by-step manner, the procedure for the installation of the Nittan evolution 1 Fire Alarm Control Panel. This Installation Manual must not be left accessible to the User.

1.6 FIRE ALARM SYSTEMS CODE OF PRACTICE

This manual is not designed to teach Fire Alarm System design. It is assumed that the System has been designed by a competent person, and that the installer has an understanding of Fire Alarm System components and their use. We strongly recommend consultation with a suitably qualified, competent person regarding the design of the Fire Alarm System. The System must be commissioned and serviced in accordance with our instructions and the relevant National Standards. Contact the Fire Officer concerned with the property at an early stage in case he has any special requirements. If in doubt, read the latest edition of BS 5839-1 "Fire Detection and Alarm Systems for buildings (Code of Practice for System Design, Installation, commissioning and maintenance)" available from the BSI, or at your local reference library.

1.7 EQUIPMENT WARRANTY

If this equipment is not fitted and commissioned according to our guidelines, and the relevant National Standards, by an approved and competent person or organisation, the warranty may become void.
2- PANEL SPECIFICATION

2.1 FUNCTIONS REQUIRED BY EUROPEAN STANDARD EN 54 PART 2 ...7
2.2 EXPLANATION OF ACCESS LEVELS ..7
2.3 PANEL SPECIFICATIONS - ENCLOSURE ...8
2.4 PANEL SPECIFICATIONS - ELECTRICAL ..8
2.5 FUSE SPECIFICATIONS - Power Supply Controller PCB ..9
2.6 FUSE SPECIFICATIONS - CIE PCB ..9
2.1 FUNCTIONS REQUIRED BY EUROPEAN STANDARD EN 54 PART 2

The Nittan Evolution 1 fire alarm control panel provides the following mandatory and optional functions as prescribed by the European standard EN 54 Part 2.

(a) Mandatory Functions
The mandatory functions and corresponding indications provided by this panel are:

- fire alarm condition
- fault warning condition
- disablement condition
- quiescent condition (when the CIE is powered by a power supply conforming to EN 54-4 and no other functional condition is indicated)

(b) Optional Functions (Options with Requirements)
The options with requirements provided by this panel are:

- Clause 7.8 - output to fire alarm devices (i.e. sounders)
- Clause 7.11 - delays to outputs
- Clause 7.12 - Dependencies on More than one alarm signal (Type C)
- Clause 8.3 - fault signals from points
- Clause 9.5 - disablement of addressable points
- Clause 10 – test Condition

(c) Other Functions outside EN54
USB Port (For PC configuration)
RS484 Network / Repeater connection
TCP/IP (Ethernet) connection (Remote access)

NB the terms ‘device’ and ‘point’ are used interchangeably throughout this manual.

2.2 EXPLANATION OF ACCESS LEVELS

The Nittan Evolution System has the following access levels.

<table>
<thead>
<tr>
<th>ACCESS LEVEL</th>
<th>ACCESSED BY</th>
<th>ACCESS METHOD</th>
<th>FUNCTIONS ACCESSED</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>General public</td>
<td>Default state</td>
<td>View Panel</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Override delay (if used)</td>
</tr>
<tr>
<td>2a</td>
<td>Responsible person</td>
<td>Enter user access code (default 0001)</td>
<td>Start sounders</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>stop sounders</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Silence buzzer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Reset panel</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Access User Menu</td>
</tr>
<tr>
<td>2b</td>
<td>Responsible person</td>
<td>Enter user access code (default 0001), and press Menu Access Icon</td>
<td>Enable / disable sections of system</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Test Mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>View Zones / Points</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>View event log</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Turn off delay</td>
</tr>
<tr>
<td>3a</td>
<td>Installer / Engineer</td>
<td>Enter Engineer Password (Default 9999), and press Menu Access Icon</td>
<td>Configure loops</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Assign zones</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Assign Text to each point</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Modify Alarm Operation Programming</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Configure network (if fitted)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>System Diagnostics (LED blink / loop Autocheck)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Change passwords</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Configure TCP/IP Port</td>
</tr>
<tr>
<td>3b</td>
<td>Installer / Engineer</td>
<td>Open Enclosure</td>
<td>Connect wiring during Install</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Battery check during Maintenance</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Update Cause & Effect programming via USB</td>
</tr>
<tr>
<td>4</td>
<td>Authorised Service Engineer</td>
<td>Open Enclosure & PC S/W</td>
<td>Update Panel Firmware, Add new language</td>
</tr>
</tbody>
</table>

Care should be taken to ensure that the access method for each level is only available to suitably qualified personnel.
2.3 PANEL SPECIFICATIONS - ENCLOSURE

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENCLOSURE SIZE (L x W x D mm)</td>
<td>370 X 311 X 113 mm</td>
</tr>
<tr>
<td>TOP CABLE ENTRIES</td>
<td>15</td>
</tr>
<tr>
<td>BOTTOM CABLE ENTRIES</td>
<td>0</td>
</tr>
</tbody>
</table>

2.4 PANEL SPECIFICATIONS - ELECTRICAL

<table>
<thead>
<tr>
<th>ELECTRICAL DESCRIPTION</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAINS VOLTAGE</td>
<td>230 V AC + 10% / - 15%</td>
</tr>
<tr>
<td>BATTERY VOLTAGE</td>
<td>2 x 12V SLA (27.6V DC @ 20 C) (3Ah – 7Ah)</td>
</tr>
<tr>
<td>POWER SUPPLY</td>
<td>NON-INTEGRAL (SWITCH MODE)</td>
</tr>
<tr>
<td></td>
<td>DC OUTPUT: Vmax = 31V , Vmin = 19.5V</td>
</tr>
<tr>
<td></td>
<td>I max A: 4.1 A</td>
</tr>
<tr>
<td></td>
<td>Ripple & Noise: <= 0.6V</td>
</tr>
<tr>
<td>CIE DC INPUT VOLTAGE</td>
<td>Vmax = 31.5V, Vmin = 19.5V</td>
</tr>
<tr>
<td>CHARGER VOLTAGE</td>
<td>27.6V</td>
</tr>
<tr>
<td>Monitored Inputs (x2)</td>
<td>End-of-Line Resistance: 4k7 ohm 0.25W</td>
</tr>
<tr>
<td>CONVENTIONAL SOUNDER OUTPUT (x2)</td>
<td>I max: 100mA</td>
</tr>
<tr>
<td></td>
<td>Quiescent voltage: -5 to -9V DC</td>
</tr>
<tr>
<td></td>
<td>Active voltage: 18 to 28V DC</td>
</tr>
<tr>
<td></td>
<td>End-of-Line Resistance: 10k ohm 0.25W</td>
</tr>
<tr>
<td>FIRE RELAY OUTPUT (x1)</td>
<td>(C,NO,NC)</td>
</tr>
<tr>
<td>Contact rating: 230V AC @ 1A</td>
<td></td>
</tr>
<tr>
<td>FAULT RELAY OUTPUT (x1)</td>
<td>Normally Energised (C,NO,NC)</td>
</tr>
<tr>
<td>Contact rating: 230V AC @ 1A</td>
<td></td>
</tr>
<tr>
<td>AUX 28V</td>
<td>100mA</td>
</tr>
<tr>
<td>LOOP VOLTAGE</td>
<td>35V Nominal (Vmax 39 V DC, Vmin 24 V DC)</td>
</tr>
<tr>
<td>MAXIMUM LOOP CURRENT</td>
<td>500 mA</td>
</tr>
<tr>
<td>NUMBER OF LOOPS</td>
<td>1</td>
</tr>
<tr>
<td>MAXIMUM NUMBER OF ZONES</td>
<td>254 Zones</td>
</tr>
<tr>
<td>MAXIMUM LOOP CAPACITY</td>
<td>254 Addresses</td>
</tr>
<tr>
<td>MAXIMUM LOOP LENGTH</td>
<td>2 km</td>
</tr>
<tr>
<td>MAXIMUM LOOP RESISTANCE</td>
<td>44 ohm (22 ohms + to +, 22 ohms – to -)</td>
</tr>
<tr>
<td>MAXIMUM LOOP CAPACITANCE</td>
<td>500 nF</td>
</tr>
<tr>
<td>MAXIMUM LOOP BAUD RATE</td>
<td>4334 Bits Per Second</td>
</tr>
<tr>
<td>MAXIMUM NETWORK SIZE</td>
<td>16 nodes</td>
</tr>
<tr>
<td>MAXIMUM DISTANCE BETWEEN NODES</td>
<td>1 km with screened Data cable</td>
</tr>
<tr>
<td>LCD DISPLAY</td>
<td>4.3” Resistive touch screen, 480 x 272 pixel resolution</td>
</tr>
<tr>
<td>LED INDICATION</td>
<td>Fire Zones 1 – 16</td>
</tr>
<tr>
<td></td>
<td>Fault / Disable / Test Zones 1 - 16</td>
</tr>
<tr>
<td></td>
<td>Power</td>
</tr>
<tr>
<td></td>
<td>Common Fire</td>
</tr>
<tr>
<td></td>
<td>Sounder Delay On</td>
</tr>
<tr>
<td></td>
<td>General Disablement</td>
</tr>
<tr>
<td></td>
<td>Controls active</td>
</tr>
<tr>
<td></td>
<td>System Fault</td>
</tr>
<tr>
<td></td>
<td>Common Fault</td>
</tr>
<tr>
<td></td>
<td>Sounder Fault / Disablement</td>
</tr>
<tr>
<td></td>
<td>General Test</td>
</tr>
<tr>
<td></td>
<td>Sounder Active</td>
</tr>
<tr>
<td>KEY ENTRY</td>
<td>Start Sounders</td>
</tr>
<tr>
<td></td>
<td>Stop Sounders</td>
</tr>
<tr>
<td></td>
<td>Silence Buzzer</td>
</tr>
<tr>
<td></td>
<td>Reset</td>
</tr>
<tr>
<td></td>
<td>(All other controls via touch screen)</td>
</tr>
<tr>
<td>ENVIRONMENTAL DATA</td>
<td>Temperature: -5 to 40 C</td>
</tr>
<tr>
<td></td>
<td>Relative Humidity: 95% Non-Condensing</td>
</tr>
<tr>
<td></td>
<td>will withstand vibrations between 5 & 150 Hz</td>
</tr>
<tr>
<td>ENCLOSURE RATING</td>
<td>IP 30</td>
</tr>
<tr>
<td>OTHER PORTS</td>
<td>USB</td>
</tr>
<tr>
<td></td>
<td>RS485 for network</td>
</tr>
<tr>
<td></td>
<td>TCP/IP</td>
</tr>
<tr>
<td></td>
<td>Micro SD card (for future use)</td>
</tr>
<tr>
<td>EN 54-2 Optional Functions with Requirements</td>
<td>7.8, 7.11,7.12, 8.3, 9.5, 10</td>
</tr>
</tbody>
</table>
2.5 FUSE SPECIFICATIONS - Power Supply Controller PCB

<table>
<thead>
<tr>
<th>Fuse Label</th>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_Fuse</td>
<td>1A</td>
<td>PSU Output – Channel A (USED TO POWER PANEL)</td>
</tr>
<tr>
<td>B_Fuse</td>
<td>1A</td>
<td>PSU Output – Channel B (SPARE)</td>
</tr>
<tr>
<td>Link Fuse</td>
<td>5A</td>
<td>Battery fuse</td>
</tr>
</tbody>
</table>

2.6 FUSE SPECIFICATIONS - CIE PCB

The Nittan evolution 1 CIE PCB has no User serviceable fuses. It uses resettable fuses throughout.
3-INTRODUCTION TO THE NITTAN EVOLUTION PANEL

3.1 ABOUT THE NITTAN EVOLUTION FIRE ALARM PANEL .. 11
3.2 PANEL INTERNAL LAYOUT ... 11
3.3 ACCESSING THE PANEL .. 12
3.4 Navigating the Panel Menus ... 13
3.5 CONTROLS ... 14
3.6 INDICATING DIFFERENT PANEL STATES .. 15
 3.6.1 The Quiescent Condition ... 15
 3.6.2 The Alarm Condition ... 15
 3.6.3 The Fault Condition ... 15
 3.6.4 Disablement .. 16
 3.6.5 Test Mode ... 17
 3.6.6 Multiple Conditions ... 17
3.1 ABOUT THE NITTAN EVOLUTION FIRE ALARM PANEL

The Nittan evolution 1 is a single loop Analogue addressable control panel that uses the Nittan evolution Protocol. It has a touch screen LCD Display.
It can run 254 devices on the loop.
It has 254 zones, with 16 zones indicated by LED
It can be networked with other Nittan evolution 1 panels with up to 16 panels per network.
It has a simple intuitive cause and effect programming for configuring sounder & relay operation.
It has a built in TCP-IP port that allows remote access to the panel for authorised service companies.

3.2 PANEL INTERNAL LAYOUT

![Diagram of Nittan evolution 1 panel showing internal view with main PCB fitted and with main PCB removed]

Figure 1: Plan view of Nittan evolution 1 panel showing internal view with main PCB fitted and with main PCB removed
3.3 ACCESSING THE PANEL

The Nittan evolution 1 panel has 2 user access levels and one installer access level.

Basic user access (Access level 2a)
Tap LCD. Select user icon. Enter user access code (Default 0001)
This allows the user to have access to the main control buttons, to silence and reset the panel.
It is indicated by a steady Controls Active LED, and an open padlock icon in the bottom left corner of the LCD screen.

Full user access (Access level 2b)
From access level 2a press the menu access icon.
This allows the user to view the user menus, to view device status, event logs etc.
It is indicated by a steady Controls Active LED, and an Exit Menu icon in the bottom left corner of the LCD screen.

Engineer Access (Access level 3a)
Tap LCD. Select Engineer icon. Enter Engineer access code (Default 9999)
This allows the engineer to configure the panel, Setting zone & device text, allocating zones, entering panel cause & effect etc.
It is indicated by a Flashing Controls Active LED, and an open padlock icon in the bottom left corner of the LCD screen.

Turning off access.
If the panel is in one of the menus, press the exit menu icon in the bottom left corner.
Press the padlock icon in the bottom left corner.
The controls active LCD will turn off, and the padlock icon will turn off.
(The panel will automatically turn off access if left unattended for 5 minutes)
3.4 NAVIGATING THE PANEL MENUS

The Nittan evolution 1 panel has 2 menus, user and installer. Entering the user code (Default 0001) accesses the user menu. Entering the Installer password (Default 9999) enables access level 3. Press the access menu icon \(\text{Access Menu} \) to access the Engineer menu.

The menus are in the form of icons with a text label underneath. To select a particular menu, press the relevant icon.

The sub screens are in the form of tabbed screens if there is more than one sub-option, with the data either displayed in a table, or as separate data fields, depending on the function of the sub screen.

Table View Screen Example

In a table field, there are editable data (eg device label), and non-editable data (eg Device type). Tapping on an editable data field will allow it to be edited.

Data Field Screen Example

In a data field screen, the data will either be values, or option buttons. Clicking on the field will allow it to be edited.

Text Keyboard

Used to enter text. Use <- and -> to position the keyboard. Press the circle at the end of the text field to delete text as required. 123 button brings up the numeric keyboard. And CAP turns on the caps lock.

Press tick when finished.

Number Keyboard

Use the up & down icons to increase or decrease the number, or enter the new number via the keypad.
3.5 CONTROLS
The panel contains the following mandatory controls. They can only be operated when the user or engineer (ADMIN) password has been entered. The CONTROLS ACTIVE LED indicates that the controls have been enabled.

START SOUNDER
This control can be used by authorised personnel to start the sounders.

STOP SOUNDER
This control can be used by authorised personnel to stop or silence the sounders whilst the panel is in the fire alarm condition.

SILENCE BUZZER
This control silences the panel’s internal buzzer which is always activated when a fire or a fault has been detected.

RESET
After an alarm has been fully investigated and dealt with, operating this control resets the fire alarm condition. The same control is used to reset from a fault condition.

It is good practice to stop the sounders before resetting the panel. However, pressing the RESET control whilst the sounders are still active, will silence the sounders as well as resetting the fire alarm condition.

OTHER CONTROLS
Other controls are through virtual buttons on the panel’s touch screen display. They include, amongst others, alpha and numeric key pads, cursors for table navigation and accept & cancel buttons for system changes.
3.6 INDICATING DIFFERENT PANEL STATES

During Normal operation the panel will be in one of the following states depending on the status of the devices connected to the panel, and user intervention. Below is a summary of the different conditions.

3.6.1 The Quiescent Condition

This is the panel’s normal state. There are no faults or alarms, and the panel is running normally. This is indicated by The LCD showing System Normal, and All LEDS being off, apart from Power, and perhaps Controls Active (depending on the last user action).

In the quiescent condition, the panel displays:
- System Healthy.
- Nittan Logo

3.6.2 The Alarm Condition

A fire is indicated on the Nittan evolution 1 panel by:
- COMMON FIRE RED LED & Zone alarm LED (for zones 1 to 16)

On the screen, the panel shows:
- Fire Icon
- Number of zones in alarm
- Number of devices in alarm
- First & last zones in alarm
- Details of alarms in chronological order (showing device type, Zone number & label, Device address & label)
- Scroll arrows for displaying further events

3.6.3 The Fault Condition

All faults are indicated by a flashing yellow common fault LED, and either an additional fault LED, or an LCD message.

Faults can be divided into 2 types, “Device Faults” and “General Faults”. Device Faults are any fault associated with a particular device address on the loop. They usually report Address & zone information as well as a description of the fault.

General Faults are everything else, e.g. sounder circuits, power supply, earth faults etc. Any fault on the panel will flash the common fault LED in addition to displaying details of the fault.
3.6.4. Disablement

Disablements are indicated with the general disablement LED, and a mixture of LCD/LED indications.

In this example, zone 1 is disabled. The panel shows that one zone is disabled, and that the 246 devices in that zone are disabled. Press the zone icon, or the Device icon for details of the disablements.

In this example, there is a single addressable point disabled. Press the Device icon for details of the disablement.

In this example, sounder circuit 1 on the motherboard has been disabled.

Pressing one of the zone disablement icons will give further details about the disablement.

Or pressing the disabled loop devices icon will give details of the devices disabled.
3.6.5 Test Mode

In this example, one Zone 1 is in test mode. A number of zones can be put into test at the same time if required. The test can be silent, or with sounders. If the sounder option is chosen, only sounders within the same zone as the test device are operated.

As devices are tested, the screen changes to show the recent tests. Use the arrow to scroll to view older tests if required.

3.6.6 Multiple Conditions

In the event of multiple conditions, the panel will display the highest priority event. It will display the presence of suppressed events as icons on the top right of the screen. The number of events for each category is shown on the icon. To display any of the suppressed events, press the icon of that event.
4 - DESIGNING THE SYSTEM
4.1 DESIGNING THE SYSTEM
4.2 RECOMMENDED CABLE TYPES AND THEIR LIMITATIONS
4.3 LOOP CALCULATIONS
4.4 MAXIMUM LOOP CABLE LENGTH RECOMMENDATIONS
4.5 BATTERY CALCULATIONS
4.6 CHOOSING AUDIBLE & VISIBLE WARNING DEVICES
 4.6.1 ADDRESSABLE SOUNDER
 4.6.2 ADDRESSABLE SOUNDER BASE
 4.6.3 ADDRESSABLE DETECTOR WITH BUILT IN SOUNDER
 4.6.4 ADDRESSABLE SOUNDER CIRCUIT CONTROLLER
 4.6.5 PCB CONVENTIONAL SOUNDER CIRCUITS
 4.6.6 ADVANTAGES AND DISADVANTAGES OF DIFFERENT SOUNDER TYPES
4.7 System Spare Capacity
4.1 DESIGNING THE SYSTEM

The first consideration when designing the fire alarm system is the type or category of fire protection that is required for the building. In the UK this is fully explained in the British Standard BS 5839-1. This contains guidance on how many smoke detectors, heat detectors, call points, sounders etc. should be fitted for the type of coverage that is required.

Next decide on the number of loops of addressable devices that need to be installed. Nittan evolution 1 is a single loop panel. The maximum loop capacity is 254 devices (also called points or addresses). NOTE: This may be limited by power demand of Loop powered Sounder/Beacon devices. If the building requires more than 254 devices, then several control panels can be networked. The network capacity is 16 panels.

All fire alarm systems must be subdivided into zones, which represent the geographical areas of the building. Nittan evolution 1 allows any number of devices to be allocated to a zone. However, it is assumed that a zone will not contain more than 32 fire detectors and/or manual call points, since this would correspond to an unacceptably large search area.

Each panel may be configured to have between 1 and 254 zones. Although a fire alarm system has to be subdivided into zones, the cause and effect actions applicable to Nittan evolution 1 can be based on other groupings as well as zones. The other groupings are panels, Local I/O and points. Cause and effect is described later in this manual.

Whenever possible, give each device as descriptive a label as possible. The better the description, the easier it is to locate in the event of an alarm. The panel allows 47 characters. It may be necessary to use abbreviations to achieve the required label. Keep the design of the system, and any changes to it well documented. This makes it easier to trace any configuration errors during installation & commissioning.

4.2 RECOMMENDED CABLE TYPES AND THEIR LIMITATIONS

All wiring must be installed to meet the current versions of BS5839: Pt1 and BS 7671 (IEE Wiring Regulations) standards. Other National standards of fire alarm system installation should be adhered to where applicable. Screened cables should be used throughout the installation to help shield the Panel from outside interference and ensure EMC compatibility.

The two categories of cable according to BS5839: Pt1 “Fire Detection and Alarm Systems for Buildings (Code of Practice for System Design, Installation and Servicing)” are:

- Standard fire resisting cable – to PH30 classification of EN 50200 (including the 30 minute survival time of Annex E)
- Enhanced fire resisting cable – to PH120 classification of EN 50200 (including the 120 minute survival time of BS 8434-2)

(Note that all cables should be at least 1mm² cross section)

On the Nittan evolution 1 Panel the general recommendation would be to use standard fire resistant cable, such as Firetuff™, FP200 or an equivalent. These cables are screened, and will provide good EMC shielding when properly grounded at the panel.

Certain system specifications may demand the use of a particular type of cable and due regard should be paid to this fact. For non-BS5839 installations, other cable types may be suitable.

Depending on the environment, the cables may need mechanical protection (such as a conduit).

4.3 LOOP CALCULATIONS

Like most addressable systems, it is important that a system is designed within the panel’s limits. The following Limits should not be exceeded:

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum loop load</td>
<td>500mA</td>
</tr>
<tr>
<td>Maximum Quiescent loop load</td>
<td>400mA</td>
</tr>
<tr>
<td>Maximum cable resistance</td>
<td>22 ohms per core (36 Ohms from presentation)</td>
</tr>
<tr>
<td>Maximum cable capacitance</td>
<td>400nF core to screen</td>
</tr>
<tr>
<td></td>
<td>200nF core to core</td>
</tr>
<tr>
<td>Minimum loop voltage</td>
<td>24V DC</td>
</tr>
</tbody>
</table>
4.4 MAXIMUM LOOP CABLE LENGTH RECOMMENDATIONS

With an addressable system, some care must be taken when calculating the appropriate cable gauge for the system. The main limitation is that during an alarm condition (maximum current draw), the voltage at all devices must be at least 24 Volts with at least 2.5V of superimposed data signal.

The exact calculation equations are beyond the scope of this manual, because of the distributed load of the sounders on the loop, but the following table gives a rough guide for maximum cable lengths at various current loads for 3 different cable gauges.

<table>
<thead>
<tr>
<th>MAXIMUM LOOP CURRENT (IN ALARM)</th>
<th>500 mA</th>
<th>400 mA</th>
<th>300 mA</th>
<th>200 mA</th>
<th>100 mA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1mm CSA cable</td>
<td>300</td>
<td>380</td>
<td>500</td>
<td>760</td>
<td>1500</td>
</tr>
<tr>
<td>1.5mm CSA cable</td>
<td>450</td>
<td>560</td>
<td>750</td>
<td>1130</td>
<td>2000</td>
</tr>
<tr>
<td>2.5mm CSA cable</td>
<td>740</td>
<td>920</td>
<td>1200</td>
<td>1860</td>
<td>2000</td>
</tr>
</tbody>
</table>

EG. A system with a maximum load of 300mA using 1.5mm cable can have a maximum loop run of 750 m end to end. When installed the cable characteristics should meet the following parameters:

+ve in to +ve out less than 22 ohms.
-ve in to -ve out less than 22 ohms (may need to temporarily disable isolators to measure).
+ve to -ve greater than 500k ohm.
+ve to Earth greater than 1M ohm.
-ve to Earth greater than 1M ohm.
+ve to -ve less than 50 mV pickup (on AC & DC scales).
+ve to -ve Capacitance Less than 0.5uF.
+ve to Earth Capacitance Less than 0.5uF.
-ve to Earth Capacitance Less than 0.5uF.

4.5 BATTERY CALCULATIONS

All systems will have a required standby time and alarm time. The usual Standby times are 24 hours, 48 hours, or 72 hours, depending on the type of system. Generally 30 minutes of alarm time is considered sufficient.

Information on calculating the required battery size can be found later in this manual. Alternatively, a battery calculation spreadsheet is available. Please contact your distributor for details.

4.6 CHOOSING AUDIBLE & VISIBLE WARNING DEVICES

There are a number of options for Audible & visual Devices that can be directly or indirectly connected to the loop of a Nittan evolution 1 panel:

A maximum of 64 loop powered sounders are permitted on each loop (which can be either stand-alone sounders or sounder bases. A maximum of 254 devices can be connected to the loop, with addresses 1 to 254 which can occur in any order. Short circuit isolators should be used to prevent losing the whole loop in the event of a single short circuit fault. They should be fitted to each zone boundary, such that any short circuit will only affect the devices in 1 zone.

4.6.1 ADDRESSABLE SOUNDER

This type of sounder takes one of the 254 addresses available on each loop. The address is set with the programming tool. It can be activated individually, or in groups related to its zone number, as determined by the cause and effect programmed. An example of this type of sounder is the Nittan EV-HIOP

4.6.2 ADDRESSABLE SOUNDER BASE

This consists of an addressable sounder in the base of an addressable detector. The sounder and detector are set to different addresses, i.e. two devices are located at the same position on a loop but occupy two addresses. The address is set with the programming tool, or with dip switches, depending on the model used. It can be activated individually, or in groups related to its zone number, as determined by the cause and effect programmed. An example of this type of sounder is the Nittan EV-AV2
4.6.3 ADDRESSABLE DETECTOR WITH BUILT IN SOUNDER

The Nittan EV-PS is an addressable photo-electric detector with a built in sounder. It occupies just one address space. The address is set with the programming tool. It can be activated individually, or in groups related to its zone number, as determined by the cause and effect programmed.

4.6.4 ADDRESSABLE SOUNDER CIRCUIT CONTROLLER

The Nittan addressable sounder circuit controllers (EV-SCM) can be used to connect one conventional sounder circuit to one address on the loop. It needs external power to be supplied from a suitable 24 V power supply.

4.6.5 PCB CONVENTIONAL SOUNDER CIRCUITS

The terminations PCB has 2 conventional sounder circuit outputs, with a maximum capacity of 100 mA each. Please note that conventional sounders should be wired as shown in the diagram below:

*The descriptions of sounders in this section also apply to flashers and combined sounder / flashers.

Note: If non-polarised alarm devices (e.g. some types of old mechanical bell, or a relay) are used, then a diode will have to be placed in line with the device to enable fault monitoring. They may also need a back EMF protection diode. (symptoms: Chattering sounder relays that don’t turn off).

4.6.6 ADVANTAGES AND DISADVANTAGES OF DIFFERENT SOUNDER TYPES

<table>
<thead>
<tr>
<th>SOUNDER TYPE</th>
<th>ADVANTAGE</th>
<th>DISADVANTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional</td>
<td>Wide range of devices. Devices tend to be cheaper. Immediate start / stop. No quiescent current.</td>
<td>Needs extra cabling. All sounders on each circuit start together</td>
</tr>
<tr>
<td>Stand-Alone Addressable or Addressed Sounder Base</td>
<td>No extra cabling. Can be individually started. Can use any type of detector.</td>
<td>Tends to be more expensive. Maximum 64 per loop. Quiescent current relatively high. Uses an address.</td>
</tr>
<tr>
<td>Combined Detector sounder</td>
<td>Can be individually started. Only uses one address space. Uses a standard detector base.</td>
<td>Only available as an optical detector. Not available as heat, opto-heat, dual optical etc</td>
</tr>
</tbody>
</table>
4.7 System Spare Capacity

The UK Fire alarm system code of Practice for Designing, Installing, Commissioning & maintaining fire alarm systems, BS5839 recommends allowing at least 25% free capacity when designing a fire system.

This is a good precaution as it allows for:

- Changes to the system requirements before the site is finished
- Additional devices identified as part of the commissioning process
- Future Changes to the building layout (eg partitioning an open plan area)

If a system is designed to full capacity, any small additions might mean substantial changes (network an extra panel, or change panel to an alternative model)
5 - INSTALLING THE PANEL

5.1 MOUNTING THE FIRE ALARM CONTROL PANEL

5.2 LOCATING THE FIRE ALARM CONTROL PANEL

5.3 FIXING THE BACK BOX TO THE WALL

5.4 MAINS WIRING RECOMMENDATIONS

5.5 PLANNING CABLE ENTRY

5.6 CONNECTING THE MAINS POWER

5.7 CONNECTING THE BATTERIES
5.1 MOUNTING THE FIRE ALARM CONTROL PANEL

The Nittan evolution 1 comes with many cable entry holes. If another entry hole is required, it is strongly recommended that the panel door is removed to avoid accidental damage. Also, the back plate which holds the loop cards and power supply should be removed and stored in a safe place. This would also help while fixing the back box to the wall.

5.2 LOCATING THE FIRE ALARM CONTROL PANEL

The control panel should be installed in accordance with the following recommendations:
- The panel should be close to the main entrance of the building, so that it can be viewed by any fire-fighting personnel entering the building.
- It should be fitted to a sturdy wall that will not flex unnecessarily.
- It should ideally be mounted at eye level, in order for it to be viewed without need of a ladder.
- It should be installed in a dry, weatherproof place, preferably NOT in direct sunlight.
- It should be easily accessible, so that the responsible person can perform their regular fire alarm checks.

5.3 FIXING THE BACK BOX TO THE WALL

Fix the enclosure to the wall using the three mounting holes provided (2 circular holes near the bottom of the rear face and one 'keyhole' near the top of the rear face).

Check the build and condition of the wall to decide a suitable screw fixing. The mounting holes are designed for No 8 roundhead or countersunk woodscrews (or similar). Remove any debris from the enclosure. Take care not to damage the FACP during installation.
5.4 MAINS WIRING RECOMMENDATIONS

The Mains supply to the FACP is fixed wiring, using Fire resisting 3-core cable (Between 1 mm² and 2.5mm²), fed from an isolating double pole switch fused spur, fused at 3A. **IT SHOULD NOT BE CONNECTED THROUGH AN RCD.** This should be secure from unauthorised operation and be marked ‘FIRE ALARM: DO NOT SWITCH OFF’. The supply must be exclusive to the Fire Panel. **MAKE SURE ANY SPARE ENTRY HOLES ARE COVERED WITH THE GROMMETS PROVIDED.**

For information on how to connect Mains to the Panel’s Power Supply PCB, see Section 6. Also refer to rating information on the mains cover inside the FACP.

5.5 PLANNING CABLE ENTRY

Fig.2 below shows the location of the cable entries to facilitate planning of wiring to be brought to the panel. The Knock-out cable entries can be easily removed by Tapping with a suitable screwdriver or chisel from outside the control panel box. Alternatively, the entry can be drilled out, using a 19mm hole cutter. Care should be taken if using a drill. Consider removing the main PCB to prevent damaging it.

5.6 CONNECTING THE MAINS POWER

![Diagram of mains connection and wiring](image.png)

The clear plastic cover must always be refitted over the mains terminals after the mains cables are connected.

Figure 1. Wiring the mains connection

The panel should be connected to a mains supply by a 3A rated spur to the fuse box with 1mm2 to 2.5mm2 3-core cable. Nothing else should be connected to this supply. The cable should be fire resistant. NB It is recommended that the mains cable should pass twice through the ferrite supplied with the panel, to improve the panel’s immunity to electromagnetic interference. The ferrite should be positioned between the mains entry port and the power supply cage.

The AC Live (L), Earth (E) and Neutral (N) connections are marked on the power supply cage. It is essential that the mains Earth cable is connected to the PSU’s Earth terminal. The incoming mains cable should be kept separate from the loop cables to help minimise mains interference.
Nittan evolution 1 Single loop touch screen panel

MAKE SURE ANY SPARE ENTRY HOLES THAT HAVE BEEN OPENED, BUT NOT USED ARE COVERED WITH SUITABLE GROMMETS OR BLANKING SCREWS

It is advisable to apply power to the panel before connecting any devices, to check for correct operation, and to familiarise yourself with the fire alarm panels controls.

If a knockout is removed, fill the hole with a suitable cable gland. If any knockout is removed, but subsequently not used, it should be covered up.

The 230V AC Mains cable must be fed into the enclosure via one of the cable entries at the top right corner of the back box. (Refer to “Connecting the Mains Power” in Section 6.1).

5.7 CONNECTING THE BATTERIES

To calculate the exact requirement, use the equation in the STANDBY BATTERY REQUIREMENTS section.

The two batteries are wired in series.

- The +ve of one battery is connected to the red battery lead.
- The –ve of the other battery is connected to the black battery lead.
- The –ve of the first battery is connected to the +ve of the second battery using the FUSED link wire supplied.

Recommended Battery Types:

- Powersonic 12V, 7 Ah (Model PS-1270);

Other makes and sizes of battery may be suitable. Calculate the standby requirements to determine the most suitable size of battery.
6 - INSTALLING THE DEVICES

6.1 ADDRESSABLE LOOP WIRING ... 28

6.2 ADDRESSABLE LOOPS (Pre commissioning check) ... 28

6.3 SPECIFIC DEVICE WIRING INSTRUCTIONS ... 29

6.4 SETTING THE DEVICE ADDRESS (DETECTORS, CALL POINTS, SOUNDERS & INTERFACE UNITS) ... 29

 6.4.1 SOFT ADDRESSING .. 29

 6.4.2 DIP SWITCH ADDRESSING ... 29

 6.4.3 DIP SWITCH ADDRESS SETTINGS - FULL TABLE ... 30

6.5 FIRE RELAY (VOLTAGE FREE CHANGEOVER CONTACTS) ... 32

6.6 FAULT RELAY (VOLTAGE FREE CHANGEOVER CONTACTS) ... 32

6.7 AUXILIARY DC OUTPUT ... 32

6.8 FIELD DEVICE TERMINATION ... 33
6.1 ADDRESSABLE LOOP WIRING

The Nittan evolution 1 has one addressable loop. Addressable detectors, addressable call points, addressable loop powered sounders and several other interface units can be fitted to this loop. A MAXIMUM OF 254 ADDRESSES CAN BE CONNECTED TO the LOOP. We recommend that the first and last devices on a loop have isolator bases fitted. Also the last device on each zone should have an isolator fitted. This is to prevent a short circuit fault in one zone affecting another zone. The screen cable at each end of the loop (not shown below) must be connected to the Panel’s earth bar.

![Diagram of addressable loop wiring](image)

Figure 5: Example of addressable loop wiring (top) & connections to loop cards (bottom)

6.2 ADDRESSABLE LOOPS (Pre commissioning check)

At this stage it is important to remember devices (e.g. detectors, call points, sounders etc.) should not be connected yet, if a high voltage "Megger" type tester is to be used to check for continuity of the loop wiring.

Pre-Commissioning Cable Checks

+ve in to +ve out less than 22 ohms.
-ve in to -ve out less than 22 ohms (may need to temporarily disable isolators to measure).
+ve to -ve greater than 500k ohm.
+ve to Earth greater than 1M ohm.
-ve to Earth greater than 1M ohm.
+ve to -ve less than 50 mV pickup (on AC & DC scales).
+ve to -ve Capacitance Less than 0.5µF.
+ve to Earth Capacitance Less than 0.5µF.
-ve to Earth Capacitance Less than 0.5µF.
6.3 SPECIFIC DEVICE WIRING INSTRUCTIONS

Note For information about wiring specific devices, please refer to the instruction sheet supplied with that device.

6.4 SETTING THE DEVICE ADDRESS (DETECTORS, CALL POINTS, SOUNDERS & INTERFACE UNITS)

Note that the devices do not need to be addressed sequentially along the loop. Technically they can be addressed in any sequence. But addressing them sequentially will help in fault finding, should there be a problem with the loop wiring.

6.4.1 SOFT ADDRESSING

Most Nittan Evolution devices are soft addressed using the EV-AD2 Handheld Address Programmer. See the address programmer manual for more information.

A complete programming kit, with lead and adaptor is available.

6.4.2 DIP SWITCH ADDRESSING

Some Devices are addressed with a dip switch

<table>
<thead>
<tr>
<th>Switch 8 ON = Add 128</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch 7 ON = Add 64</td>
</tr>
<tr>
<td>Switch 6 ON = Add 32</td>
</tr>
<tr>
<td>Switch 5 ON = Add 16</td>
</tr>
<tr>
<td>Switch 4 ON = Add 8</td>
</tr>
<tr>
<td>Switch 3 ON = Add 4</td>
</tr>
<tr>
<td>Switch 2 ON = Add 2</td>
</tr>
<tr>
<td>Switch 1 ON = Add 1</td>
</tr>
</tbody>
</table>

The example shown would be:

switches 8,7,5,3 & 2 = 128 + 64 + 16 + 4 + 2 = Address 214
6.4.3 DIP SWITCH ADDRESS SETTINGS - FULL TABLE

<table>
<thead>
<tr>
<th>ADDRESS</th>
<th>SWITCHES</th>
<th>ADDRESS</th>
<th>SWITCHES</th>
<th>ADDRESS</th>
<th>SWITCHES</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>N</td>
<td>43</td>
<td>N</td>
<td>86</td>
<td>N</td>
</tr>
<tr>
<td>1</td>
<td>O</td>
<td>44</td>
<td>O</td>
<td>87</td>
<td>O</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>45</td>
<td>T</td>
<td>88</td>
<td>T</td>
</tr>
<tr>
<td>3</td>
<td>U</td>
<td>46</td>
<td>U</td>
<td>89</td>
<td>U</td>
</tr>
<tr>
<td>4</td>
<td>S</td>
<td>47</td>
<td>S</td>
<td>90</td>
<td>S</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>48</td>
<td>E</td>
<td>91</td>
<td>E</td>
</tr>
<tr>
<td>6</td>
<td>D</td>
<td>49</td>
<td>D</td>
<td>92</td>
<td>D</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>52</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>53</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>56</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>57</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>59</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>62</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>63</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>64</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>67</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td>69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td>70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>71</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
<td>72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
<td>74</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
<td>75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td></td>
<td>76</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
<td>77</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td>78</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td></td>
<td>79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td></td>
<td>80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td></td>
<td>81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td></td>
<td>82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>83</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td></td>
<td>84</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td></td>
<td>85</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADDRESS</td>
<td>SWITCHES</td>
<td>ADDRESS</td>
<td>SWITCHES</td>
<td>ADDRESS</td>
<td>SWITCHES</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>---------</td>
<td>----------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>128</td>
<td>OFF</td>
<td>171</td>
<td>OFF</td>
<td>214</td>
<td>OFF</td>
</tr>
<tr>
<td>129</td>
<td>OFF</td>
<td>172</td>
<td>OFF</td>
<td>215</td>
<td>OFF</td>
</tr>
<tr>
<td>133</td>
<td>OFF</td>
<td>173</td>
<td>OFF</td>
<td>216</td>
<td>OFF</td>
</tr>
<tr>
<td>131</td>
<td>OFF</td>
<td>174</td>
<td>OFF</td>
<td>217</td>
<td>OFF</td>
</tr>
<tr>
<td>132</td>
<td>OFF</td>
<td>175</td>
<td>OFF</td>
<td>218</td>
<td>OFF</td>
</tr>
<tr>
<td>133</td>
<td>OFF</td>
<td>176</td>
<td>OFF</td>
<td>219</td>
<td>OFF</td>
</tr>
<tr>
<td>134</td>
<td>OFF</td>
<td>177</td>
<td>OFF</td>
<td>220</td>
<td>OFF</td>
</tr>
<tr>
<td>135</td>
<td>OFF</td>
<td>178</td>
<td>OFF</td>
<td>221</td>
<td>OFF</td>
</tr>
<tr>
<td>136</td>
<td>OFF</td>
<td>179</td>
<td>OFF</td>
<td>222</td>
<td>OFF</td>
</tr>
<tr>
<td>137</td>
<td>OFF</td>
<td>180</td>
<td>OFF</td>
<td>223</td>
<td>OFF</td>
</tr>
<tr>
<td>138</td>
<td>OFF</td>
<td>181</td>
<td>OFF</td>
<td>224</td>
<td>OFF</td>
</tr>
<tr>
<td>139</td>
<td>OFF</td>
<td>182</td>
<td>OFF</td>
<td>225</td>
<td>OFF</td>
</tr>
<tr>
<td>140</td>
<td>OFF</td>
<td>183</td>
<td>OFF</td>
<td>226</td>
<td>OFF</td>
</tr>
<tr>
<td>141</td>
<td>OFF</td>
<td>184</td>
<td>OFF</td>
<td>227</td>
<td>OFF</td>
</tr>
<tr>
<td>142</td>
<td>OFF</td>
<td>185</td>
<td>OFF</td>
<td>228</td>
<td>OFF</td>
</tr>
<tr>
<td>143</td>
<td>OFF</td>
<td>186</td>
<td>OFF</td>
<td>229</td>
<td>OFF</td>
</tr>
<tr>
<td>144</td>
<td>OFF</td>
<td>187</td>
<td>OFF</td>
<td>230</td>
<td>OFF</td>
</tr>
<tr>
<td>145</td>
<td>OFF</td>
<td>188</td>
<td>OFF</td>
<td>231</td>
<td>OFF</td>
</tr>
<tr>
<td>146</td>
<td>OFF</td>
<td>189</td>
<td>OFF</td>
<td>232</td>
<td>OFF</td>
</tr>
<tr>
<td>147</td>
<td>OFF</td>
<td>190</td>
<td>OFF</td>
<td>233</td>
<td>OFF</td>
</tr>
<tr>
<td>148</td>
<td>OFF</td>
<td>191</td>
<td>OFF</td>
<td>234</td>
<td>OFF</td>
</tr>
<tr>
<td>149</td>
<td>OFF</td>
<td>192</td>
<td>OFF</td>
<td>235</td>
<td>OFF</td>
</tr>
<tr>
<td>150</td>
<td>OFF</td>
<td>193</td>
<td>OFF</td>
<td>236</td>
<td>OFF</td>
</tr>
<tr>
<td>151</td>
<td>OFF</td>
<td>194</td>
<td>OFF</td>
<td>237</td>
<td>OFF</td>
</tr>
<tr>
<td>152</td>
<td>OFF</td>
<td>195</td>
<td>OFF</td>
<td>238</td>
<td>OFF</td>
</tr>
<tr>
<td>153</td>
<td>OFF</td>
<td>196</td>
<td>OFF</td>
<td>239</td>
<td>OFF</td>
</tr>
<tr>
<td>154</td>
<td>OFF</td>
<td>197</td>
<td>OFF</td>
<td>240</td>
<td>OFF</td>
</tr>
<tr>
<td>155</td>
<td>OFF</td>
<td>198</td>
<td>OFF</td>
<td>241</td>
<td>OFF</td>
</tr>
<tr>
<td>156</td>
<td>OFF</td>
<td>199</td>
<td>OFF</td>
<td>242</td>
<td>OFF</td>
</tr>
<tr>
<td>157</td>
<td>OFF</td>
<td>200</td>
<td>OFF</td>
<td>243</td>
<td>OFF</td>
</tr>
<tr>
<td>158</td>
<td>OFF</td>
<td>201</td>
<td>OFF</td>
<td>244</td>
<td>OFF</td>
</tr>
<tr>
<td>159</td>
<td>OFF</td>
<td>202</td>
<td>OFF</td>
<td>245</td>
<td>OFF</td>
</tr>
<tr>
<td>160</td>
<td>OFF</td>
<td>203</td>
<td>OFF</td>
<td>246</td>
<td>OFF</td>
</tr>
<tr>
<td>161</td>
<td>OFF</td>
<td>204</td>
<td>OFF</td>
<td>247</td>
<td>OFF</td>
</tr>
<tr>
<td>162</td>
<td>OFF</td>
<td>205</td>
<td>OFF</td>
<td>248</td>
<td>OFF</td>
</tr>
<tr>
<td>163</td>
<td>OFF</td>
<td>206</td>
<td>OFF</td>
<td>249</td>
<td>OFF</td>
</tr>
<tr>
<td>164</td>
<td>OFF</td>
<td>207</td>
<td>OFF</td>
<td>250</td>
<td>OFF</td>
</tr>
<tr>
<td>165</td>
<td>OFF</td>
<td>208</td>
<td>OFF</td>
<td>251</td>
<td>OFF</td>
</tr>
<tr>
<td>166</td>
<td>OFF</td>
<td>209</td>
<td>OFF</td>
<td>252</td>
<td>OFF</td>
</tr>
<tr>
<td>167</td>
<td>OFF</td>
<td>210</td>
<td>OFF</td>
<td>253</td>
<td>OFF</td>
</tr>
<tr>
<td>168</td>
<td>OFF</td>
<td>211</td>
<td>OFF</td>
<td>254</td>
<td>OFF</td>
</tr>
<tr>
<td>169</td>
<td>OFF</td>
<td>212</td>
<td>OFF</td>
<td>255</td>
<td>OFF</td>
</tr>
<tr>
<td>170</td>
<td>OFF</td>
<td>213</td>
<td>OFF</td>
<td>256</td>
<td>OFF</td>
</tr>
</tbody>
</table>
6.5 FIRE RELAY (VOLTAGE FREE CHANGEOVER CONTACTS)

The fire relay changes over in any fire condition, and can be used for driving local fire fighting equipment such as sprinkler systems, magnetic door holders, air conditioning shut off, auto diallers etc.

NB In the quiescent condition, there is electrical continuity between C and NC. In the fire condition, there is continuity between C and NO.

6.6 FAULT RELAY (VOLTAGE FREE CHANGEOVER CONTACTS)

The fault relay is energised in the quiescent condition. This allows the relay to indicate any fault with a change of state, even in the event of total power loss. The terminals are marked for the quiescent running of the panel.

6.7 AUXILIARY DC OUTPUT

This 28V DC output is provided to support low power requirements (100mA max). A separate power supply will be required for higher current applications.
6.8 FIELD DEVICE TERMINATION

Figure 7: Connecting cables to the Nittan evolution 1 panel.

All cables should enter the enclosure via a cable gland, and the cable shields must be connected to the earth bar. Figure 7 illustrates how the mains cable and an addressable loop cable are connected to the panel. All other screens must be terminated at the brass earthing strip.

MAKE SURE ANY UNUSED ENTRY HOLES ARE COVERED.
7 - PANEL SET UP

7.1 INITIAL PANEL SET UP .. 35
7.2 SETTING TIME AND DATE ... 35
7.3 CREATING AN INSTALLATION NAME .. 35
7.4 PASSWORDS .. 36
7.5 CONFIGURING THE LOOP .. 36
7.6 ZONE LABELS ... 37
7.7 ADDRESS LABELS AND ZONING DEVICES .. 37
7.8 SETTING DEVICE OPTIONS ... 39
7.1 INITIAL PANEL SET UP
The Nittan evolution 1 panel is supplied configured ready for installation. But there are a few settings that may need to be altered. These can either be done at the fire panel, or via a PC with Smart Loop Configuration Software, which has it’s own user guide.

7.2 SETTING TIME AND DATE
Press the screen. The panel prompts for a user and password. Select Engineer, and enter the Engineer (Access Level 3) password (default is 9999) Press the access menu icon, followed by the System Icon.

Select the Clock tab. Alter the time as required. Press the exit button to leave the menu.

Pressing + or - changes the setting by 1. To make a bigger adjustment, press the number and a keypad appears to enter the new value. (Press tick to accept the value. When all values are correct, press the exit icon.

7.3 CREATING AN INSTALLATION NAME
From the installer menu, press the System Icon. Select the strings tab. Enter the Installation Name, Maintenance Company and contact number. Press the exit button to leave the menu.
7.4 PASSWORDS

From the installer menu, press the System Icon.

Select the USERS tab.
To change a user name, press user name.
To change a password, press the password. The panel prompts to enter the new password twice
To delete a user, enter the password as blank.
Any unused user should have the password left blank
Press the exit button to leave the menu.

7.5 CONFIGURING THE LOOP

Press the screen. The panel prompts for a password.
Enter the Engineer (Access Level 3) password (default is 9999)
Press the loop Icon.
The panel proceeds to learn the loop.

When the configuration is complete, the panel displays a summary of the devices found

To view details of the configuration, click the detail tab. This shows the device type found at each address, and also shows whether it was seen from Side A or Side B (to help locate CABLE BREAKS), and it also shows if the device seen is different to the previous database [!] (IE has the device type been changed), or if it is the same as previously configured [=] Press the exit button to save configuration and leave the menu.
7.6 ZONE LABELS

The reason for subdivision of a fire alarm system was explained earlier in the manual. The Nittan evolution 1 panel has 254 zones. The first 16 zones also have LED indications. When a fire is reported, the zone number in which the fire is located is indicated on the alphanumeric display. In addition to its numerical description, a zone can be identified by a text label, e.g. 3rd floor west ext. If the installer associates a text label with each zone of a fire alarm system, this will be displayed on the LCD when a fire is detected. The maximum length of the zone text label is 46 characters.

Enter the engineer password and select the zone Icon
Press on the zone text field. The panel displays it’s keyboard.

Use < and > to place the cursor, and to delete unwanted text. Type the zone name, and press exit when done. Repeat for all required zones.

The LCD also indicates the current mode of each zone – enabled, disabled or in test mode.

7.7 ADDRESS LABELS AND ZONING DEVICES

Nittan evolution 1 is an addressable panel, i.e. it will indicate the address or location of a fire that has been detected. The address number of each point or device on the loop has already been set with the address programming tool. The installation engineer must now assign a label or location for each device, e.g. ROOM 107. A maximum of 48 characters can be used for each label. At the same time each point can be allocated to a zone.

From the ENGINEER MENU, press the Point Icon.
Press the text field of the device to be edited

The Panel shows the on screen keyboard. Enter the required label (up to 46 characters). Press exit to return to the device list.
Press the zone field to edit the device’s zone if required

Edit another device, or exit the device list to save the changes.

The Device list screen also shows the current mode of each device, i.e. ENABLED or DISABLED.

Press the MODE field of a device to toggle its state between enabled and disabled.

The analogue values can be displayed by pressing the real time tab. Press the up & down arrows to scroll through the devices.

Device specific options can be set via the options tab (See following section for details).

Press the Options field for the required device to set its options.

The Add / Remove tab allows devices to be manually added or removed from the system. This is useful if it is not possible to perform a loop learn (eg, if a detector is to be changed to a different model, and the replacement is not available, or, if the loop is disconnected to perform maintenance / repair work)
To manually remove a device, tap the device so that it is highlighted yellow, then press the delete icon.

To manually add a device, press the add icon.
Select the address and device type of the item being added.
Enter the point text for the device, and select which zone it will be in.

7.8 Setting Device Options
Each Nittan Evolution device has a number of configuration settings that can be programmed at the panel. The configuration screen is accessed by selecting the device on the options tab. The options for each device are:

NOTE: LED Flash is set as enabled by default. It can be turned off (or back on) through the device options menus.

<table>
<thead>
<tr>
<th>Device</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>EV-MCP</td>
<td></td>
</tr>
<tr>
<td>Nittan Evolution Manual Call point</td>
<td>Available options:</td>
</tr>
<tr>
<td></td>
<td>LED flash</td>
</tr>
<tr>
<td>EV-P</td>
<td></td>
</tr>
<tr>
<td>Nittan Evolution Photoelectric Smoke Detector</td>
<td>Available options:</td>
</tr>
<tr>
<td></td>
<td>LED flash, Day time sensitivity (Low/Normal/High), Night time sensitivity (Low/Normal/High)</td>
</tr>
<tr>
<td>EV-PH</td>
<td></td>
</tr>
<tr>
<td>Nittan Evolution Photoelectric Smoke Heat Detector</td>
<td>Available options:</td>
</tr>
<tr>
<td></td>
<td>LED flash, Day time sensitivity - Smoke (Off/Low/Normal/High), Day time sensitivity - Heat (Off/On), Night time sensitivity - Smoke (Off/Low/Normal/High), Night time sensitivity - Heat (Off/On)</td>
</tr>
</tbody>
</table>
Nittan Evolution 1 Single loop touch screen panel

EV-PS
Nittan Evolution Photoelectric Smoke Detector with Sounder

Available options:
- LED flash
- Day time sensitivity (Low/Normal/High)
- Night time sensitivity (Low/Normal/High)

(No Sounder Options. Tone set through cause & effect)

EV-DP
Nittan Evolution Dual Sensor Photoelectric Smoke Detector

Available options:
- LED flash

EV-DPH-A2R
Nittan Evolution Photoelectric Smoke Heat Detector

Available options:
- LED flash
- Day time sensitivity - Smoke (Off/Low/Normal/High)
- Day time sensitivity - Heat (Off/On)
- Night time sensitivity - Smoke (Off/Low/Normal/High)
- Night time sensitivity - Heat (Off/On)

EV-DPH-CS
Nittan Evolution Photoelectric Smoke Heat Detector

Available options:
- LED flash
- Day time sensitivity - Smoke (Off/Low/Normal/High)
- Day time sensitivity - Heat (Off/On)
- Night time sensitivity - Smoke (Off/Low/Normal/High)
- Night time sensitivity - Heat (Off/On)

EV-H-A1R
Nittan Evolution Heat Detector Class A1R

Available options:
- LED flash

EV-H-CS
Nittan Evolution Heat Detector Class CS

Available options:
- LED flash
<table>
<thead>
<tr>
<th>Module</th>
<th>Description</th>
<th>Available Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>EV-AV2</td>
<td>Nittan Evolution Sounder with visual indicator</td>
<td>No Options Available. The different sound settings are selected through panel cause & effect.</td>
</tr>
<tr>
<td>EV-ABS</td>
<td>Nittan Evolution Base Sounder</td>
<td></td>
</tr>
<tr>
<td>EV-SCM</td>
<td>Nittan Evolution Sounder Control Module</td>
<td></td>
</tr>
<tr>
<td>EV-MINI</td>
<td>Nittan Evolution Mini Input Module</td>
<td>LED flash, Input Style (ClassB-StyleC(NO)/ClassB-StyleC(NC)/ClassB-StyleB/), Input Event (Alarm / Warning)</td>
</tr>
<tr>
<td>EV-IP</td>
<td>Nittan Evolution Input Module</td>
<td>LED flash, Input Style (ClassB-StyleC(NO)/ClassB-StyleC(NC)/ClassA-StyleD/ClassA-StyleE(NO)/ClassA-StyleE(NC)/ClassB-StyleB), Input Event (Alarm / Warning)</td>
</tr>
<tr>
<td>EV-OP</td>
<td>Nittan Evolution Output Module</td>
<td>LED flash, Input Style (ClassB-StyleC(NO)/ClassB-StyleC(NC)/ClassB-StyleB/), Input Event (Alarm / Warning)</td>
</tr>
<tr>
<td>EV-SIO</td>
<td>Nittan Evolution Input / Output Module</td>
<td>LED flash, Input Style (ClassB-StyleC(NO)/ClassB-StyleC(NC)/ClassB-StyleB/), Input Event (Alarm / Warning)</td>
</tr>
<tr>
<td>EV-ZMU</td>
<td>Nittan Evolution Input / Output Module</td>
<td>LED flash, Input Style (ClassB-StyleC(NO)/ClassA-StyleD/ClassA-StyleE(NO)/ClassB-StyleB/), Input Event (Alarm / Warning)</td>
</tr>
</tbody>
</table>
8 - PROGRAMMING

8.1. CAUSE AND EFFECT ... 43
8.2 OUTPUTS AND DELAYS ... 46
 8.2.1 Sounder Delays ... 46
 8.2.2 Relay Output Delays ... 47
 8.2.3 Programming Delays .. 47
 8.2.4 Switching off Delays at Access Level 2 47
8.3 DAY / NIGHT MODE ... 48
 8.3.1 Defining Day and Night times .. 48
 8.3.2 Setting Day-time and Night-time delays 49
 8.3.3 Setting Day-time and Night-time Detector Sensitivity 50
 8.3.4 Indication of Day / Night Mode .. 51
8.4 USER Menu Summary ... 52
8.5 ENGINEER LEVEL Menu Summary .. 53
8.6 CAUSE & EFFECT SETTINGS SUMMARY 54
8.1. CAUSE AND EFFECT

The Nittan evolution 1 system has very comprehensive, but simple to use Cause and Effect capabilities. The Default factory configuration is that any alarm will activate all outputs on the panel. Like most addressable systems, the panel allows comprehensive programming of the sounder outputs. It is the responsibility of the commissioning engineer to verify that the programmed panel actions operate the sounders as required. Any input (or cause) can generate any output (or effect). For example, if the input is a fire in zone 1 (e.g. an optical detector triggered by smoke), the system can be programmed to generate output(s) (e.g. operate one or more sounders or relay outputs in one or more zones).

The inputs and outputs can be selected from 4 categories – Point, Local I/O, Zone & Panel.

Example of Selecting a Cause & Effect (New Action)

1. Press Cause/ Effect icon. The panel shows the default common alarm setting

2. If this is not required, tap the action so that it is highlighted yellow, then press the trash Icon to delete

3. Press the add button to add an event

4. The panel displays the Select cause Screen, Choose the cause type (Point, Local I/O, zone or Panel)

 Depending on the input type chosen, the panel will display a list of sub options. For a point alarm the options are:-

 Point causes
 - Alarm
 - Detector Alarm
 - MCP Alarm
 - Fault
 - Maintenance
 - Tech Warning ON
 - Tech Warning OFF

 Loop Number
 Point Address
For a local I/O ALARM the options are:-

Local I/O causes
- Fault
- Alarm
- Tech Warning ON
- Tech Warning OFF
Local I/O start
Local I/O end

For a Zone alarm, the options are:-

Zone causes
- Alarm
- Detector Alarm
- MCP Alarm
- Fault
- Maintenance
- Tech Warning ON
- Tech Warning OFF
- Multi devices in alarm
Zone Start
Zone End

For a panel alarm, the options are:-

Panel Address
Panel causes
- Alarm
- Detector Alarm
- MCP Alarm
- Fault
- Maintenance
- Tech Warning ON
- Tech Warning OFF
- Multi devices in alarm
- Multi Zones in alarm

Select whether this will be an "AND" cause, an "OR" cause, or a single "DIRECT" cause

An AND / OR cause will request more inputs.
Select up to 8 causes. Press OUTPUT icon when finished

After selecting the input cause(s), the panel Displays a screen to select the effect options.

Panel Address: Leave as zero if the output effect is on this panel, otherwise set to the network address of the destination panel.

Output Retrigger: this defines whether the sounders will resound from a new alarm if they had been previously silenced.

The options are:-
Never resound
Resound on an alarm from a new zone
Always resound for any new alarm.
Select the output type (Point, Local I/O, zone or Panel)

Depending on the OUTPUT type chosen, the panel will display a list of sub options. For a point OUTPUT the options are:-

Day Delay (seconds)
Night Delay (seconds) This is the delay used if Day/Night timer is not set

Point Effects
- Evacuation
- Warning
- Beacon
- Switch off
- Enable
- Disable

Loop number
Point Address

For a local I/O OUTPUT the options are:-

Day Delay (seconds)
Night Delay (seconds)

Point Effects
- Evacuation
- Warning
- Switch off
- Enable
- Disable

Local I/O start
Local I/O end

For a Zone OUTPUT, the options are:-

Day Delay (seconds)
Night Delay (seconds)

Point Effects
- Evacuation on sounders
- Warning on sounders
- Activate Beacon
- Switch off SND/Beacon
- Switch ON Relays
- Switch OFF Relays
- Evacuation on Outputs
- Warning on Outputs
- Switch off Output
- Disable sounders
- Enable sounders
- Disable relays
- Enable relays
- Disable output

Zone Start
Zone End

For a panel OUTPUT, the options are:-

Day Delay (seconds)
Night Delay (seconds)

Point Effects
- Evacuation on sounders
- Warning on sounders
- Activate Beacon
- Switch off SND/Beacon
- Switch ON Relays
- Switch OFF Relays
- Evacuation on Outputs
- Warning on Outputs
- Switch off Output
- Disable sounders
- Enable sounders
- Enable sounders
- Disable output
Nittan evolution 1 Single loop touch screen panel

- Disable relays
- Enable relays
- Disable output

The panel shows the Programmed cause and effect.

It shows:
First row
Event type (DiRect, AND, OR), and entry number
The programmed output.
Day time delay
Night time delay
Second row
Input number & number of inputs (for And & OR statements)
Description of input

The panel displays direct actions with a red header, AND actions with a blue header, and OR actions with a green header.

It is not possible to edit a programming line. If a line needs to be altered it must be deleted (tap so that it turns yellow), then the new statement entered.

8.2 OUTPUTS AND DELAYS
Following the indication of a fire, the panel will activate outputs (i.e. sounders and / or relays) according to the cause and effect rules that have been programmed. In certain circumstances, the activation of outputs may be delayed whilst the fire is being investigated.

8.2.1 Sounder Delays
If the operation of sounders has been delayed in one or more of the programmed ACTIONS, then this will be indicated by the illumination of the DELAY ON LED (in the SOUNDER STATUS section of LEDs). When a fire has been indicated, the DELAY ON LED remains lit until the longest sounder delay has expired.

During a fire alarm it is possible to override all the sounder delays (at any access level) by pressing the delay override icon at the bottom of the screen, as shown.
8.2.2 Relay Output Delays
Relay outputs can also be delayed via the cause and effect actions. In this case, no LED is lit to indicate a delay (since this type of output is not mandatory).

8.2.3 Programming Delays
Delays to relays and/or sounders can be programmed as part of the cause and effect programming (See previous section). If the delay will be permanently set, the delay should be entered into the NIGHT time delay field. If the delay is only to be set at certain times of the day, the panel should be configured for day/night mode. See following section

8.2.4 Switching off Delays at Access Level 2
The panel allows the delays to be turned off by the user, as this may be required as part of the normal operation of the panel.

Enter the user menu in the usual way.
(This option is also available in the Access level 3 Engineer menu)

The panel shows Delay cancelled with Off & On options.
Select ON to cancel the delay, or select OFF to keep the delay.
Press Exit icon and save changes as prompted.

NOTE: As the delays can be toggled on & off via the user menu. If the delay is not working as expected, check in the user menu if the delays have been turned off.
8.3 DAY / NIGHT MODE

The Nittan evolution 1 has a day night timer that allows certain system responses to be altered at certain times of the day. It allows for different delays for the day and night times, and it also allows the sensitivity of certain detectors to be set differently for the day and night.

The default state of the panel is with no day/night settings programmed. It will use the “night time” delays, and the night time detector sensitivity settings.

8.3.1 Defining Day and Night times

To allow for maximum flexibility, the panel allows for more than one Day-time period each day. For example, if a site closes for a 2 hour break, the panel could be configured with 2 day-time periods eg 8:00 – 12:00 and 14:00 – 18:00.

Because of this, the panel refers to each setting as a day-time slice.

Enter the engineer menu

Select the Day/Night Menu

The panel shows that there are no daytime slices set.

Press the add icon to add a slice.

Select the day of the week, the start of the day slice and the end of the day slice.

Press tick to accept.

The screen shows the programmed day slice(s).

Press the add icon to add a slice, or press exit icon if all slices are entered

When there are more than 4 slices programmed, the panel displays up/down scroll arrows in order to view the other slices
To edit a slice, tap that slice so that it is highlighted yellow, then press the delete icon \[\text{delete}\]. Press the add icon \[\text{add}\] to add a replacement slice if required.

When finished, press the exit icon \[\text{exit}\]. The panel will ask if you want to save the changes. Press tick \[\text{tick}\] to save the changes, or press X \[\text{X}\] to discard.

8.3.2 Setting Day-time and Night-time delays

The day and night time delays are set through the cause and effect programming.

Enter the required cause (as described in section 8.1)

When the panel asks for the output effect, enter the day time delay in the first delay field. The delay is entered in seconds. The maximum delay is 600 seconds (10 minutes).

If no night time delay is needed, set the night time delay to Zero in the second field.

If a night time delay is needed (for example to allow security staff to investigate, a delay can be entered into the night time delay field.

Press tick \[\text{tick}\] to save the changes. The panel shows the cause & effect table, with the daytime delay & night time delays shown in the last 2 columns.
8.3.3 Setting Day-time and Night-time Detector Sensitivity

The day and night time sensitivities are set through the Device options screen.

Go to the engineer menu, and select the point Icon

Select the Option tab. The panel displays the Options table. Press the Options field of the device to be edited.

Note that only the following detectors can have their sensitivity altered:-
EV-P: Photoelectric smoke detector
EV-PS: Photoelectric smoke detector with built in sounder
EV-PH: Photoelectric & Heat Multi Criteria detector

For the Photo-electric detectors (EV-P and EV-PS), the sensitivity can be set to Low, Normal or High. There can be a different setting for day-time & night-time.

For the Photoelectric & Heat Multi Criteria detector, there are settings for the smoke sensor, and for the heat sensor.

The smoke sensor can be set to Off, Low, Normal or High. (setting to off will make the detector work as a heat detector only)

The heat sensor can be set to Off or ON. (setting to off will make the detector work as a smoke detector only).

Note that setting both sensors to Off will turn off the detector, so it will no longer report an alarm.
8.3.4 Indication of Day / Night Mode

The panel indicates its current operating mode by means of a vertical bar in the top left corner of the LCD.

<table>
<thead>
<tr>
<th>No Day / Night timer set.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No bar in top left corner.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Day / Night timer set. Panel in Day Mode.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>White bar in top left corner.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Day / Night timer set. Panel in Night Mode.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Black bar in top left corner.</td>
<td></td>
</tr>
</tbody>
</table>
8.4 USER Menu Summary

Default Password 0001 – Access level 2b

<table>
<thead>
<tr>
<th>ICON</th>
<th>TAB SCREEN</th>
<th>DESCRIPTION</th>
</tr>
</thead>
</table>
| Zones | Zone Mode | View Zone text label
View / edit zone mode
(Enabled/ input disabled/ output disabled/ disabled/ test/ test & sounders) |
| Zone Dev | | View Zone text label
View Quantity of devices per zone |
| Point | Basic | View Address & Device type
View Device text label
View / Edit device mode (Enabled / disabled)
View Device Zone allocation |
| | Real Time | View Address & Device type
View Device text label
View device Analogue Values |
| Log | - | View Event Log |
| Local I/O | Input 1 | View Input 1 zone allocation
View input 1 text label
View / Edit input 1 status (Enabled / disabled) |
| | Input 2 | View Input 2 zone allocation
View input 2 text label
View / Edit input 2 status (Enabled / disabled) |
| | Sounder 1 | View Sounder 1 zone allocation
View Sounder 1 text label
View / Edit Sounder 1 status (Enabled / disabled) |
| | Sounder 2 | View Sounder 2 zone allocation
View Sounder 2 text label
View / Edit Sounder 2 status (Enabled / disabled) |
| LCD / LED | - | Test panel LEDs, LCD & Buzzer |
| Delays | - | Toggle panel delays on or off |
8.5 ENGINEER LEVEL Menu Summary

Default Password 9999 – Access Level 3

<table>
<thead>
<tr>
<th>ICON</th>
<th>TAB SCREEN</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loop</td>
<td>- (Automatic)</td>
<td>Searches for all devices on the loop</td>
</tr>
<tr>
<td>Zone</td>
<td>Zone Mode</td>
<td>View / Edit Zone text label
View / edit zone mode
(Enabled/ input disabled/ output disabled/ disabled/ test/ test & sounders)</td>
</tr>
<tr>
<td>Point</td>
<td>Basic</td>
<td>View Address & Device type
View / Edit Device text label
View / Edit device mode (Enabled / disabled)
View / Edit Device Zone allocation</td>
</tr>
<tr>
<td>Real Time</td>
<td></td>
<td>View Address & Device type
View Device text label
View device Analogue Values</td>
</tr>
<tr>
<td>Options</td>
<td></td>
<td>View / Configure device specific options.</td>
</tr>
<tr>
<td>Add/Remove</td>
<td></td>
<td>Add new device
Remove a configured device</td>
</tr>
<tr>
<td>Log</td>
<td>-</td>
<td>View Event Log
Erase event log</td>
</tr>
<tr>
<td>System</td>
<td>Strings</td>
<td>Edit Installation Name
Edit installer / maintenance name
Edit installer / maintenance Contact Number</td>
</tr>
<tr>
<td>Clock</td>
<td></td>
<td>Edit Date & Time</td>
</tr>
<tr>
<td>Language</td>
<td></td>
<td>Set Panel Language</td>
</tr>
<tr>
<td>Users</td>
<td></td>
<td>Set Engineer text label
Set engineer password
Set User name label
Set user password
Set the number of user passwords</td>
</tr>
<tr>
<td>Cause & Effect</td>
<td>-</td>
<td>View / Enter / Delete Cause & Effect (See Section 8.1 for details)</td>
</tr>
<tr>
<td>Local I/O</td>
<td>Input 1</td>
<td>View / edit Input 1 zone allocation
View / edit input 1 text label
View / edit input 1 status (Enabled / disabled)</td>
</tr>
</tbody>
</table>
8.6 CAUSE & EFFECT SETTINGS SUMMARY
The table below shows the list of options available for each type of input (cause) and Output (Effect)

<table>
<thead>
<tr>
<th>Select CAUSE</th>
<th>Input Type</th>
<th>Selection 1</th>
<th>Selection 2</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Point</td>
<td>Loop (1)</td>
<td>Address (1-254)</td>
<td>Alarm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Detector Alarm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MCP Alarm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fault</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Maintenance</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tech Warning ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tech Warning OFF</td>
</tr>
<tr>
<td></td>
<td>Local I/O</td>
<td>Local I/O start (1-2)</td>
<td>Local I/O End (1-2)</td>
<td>Fault</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Alarm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tech Warning ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tech Warning OFF</td>
</tr>
<tr>
<td></td>
<td>Zone</td>
<td>Zone Start (1-254)</td>
<td>Zone End (1-254)</td>
<td>Alarm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Detector Alarm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MCP Alarm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fault</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Maintenance</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tech Warning ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tech Warning OFF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Multi devices in alarm</td>
</tr>
<tr>
<td></td>
<td>Panel</td>
<td>-</td>
<td>-</td>
<td>Alarm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Detector Alarm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MCP Alarm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fault</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Maintenance</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tech Warning ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tech Warning OFF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Multi devices in alarm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Multi Zones in alarm</td>
</tr>
</tbody>
</table>

Nittan evolution 1 Single loop touch screen panel
<table>
<thead>
<tr>
<th>Output Type</th>
<th>Selection 1</th>
<th>Selection 2</th>
<th>Day Delay</th>
<th>Night Delay</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point</td>
<td>Loop (1)</td>
<td>Address (1 to 254)</td>
<td>(0-600)</td>
<td>(0-600)</td>
<td>Evacuation Warning Beacon Switch off Enable Disable</td>
</tr>
<tr>
<td>Local I/O</td>
<td>Local I/O start (1-2)</td>
<td>Local I/O end (1-2)</td>
<td>(0-600)</td>
<td>(0-600)</td>
<td>Evacuation Warning Switch off Enable Disable</td>
</tr>
<tr>
<td>Zone</td>
<td>Zone Start (1-254)</td>
<td>Zone End (1-254)</td>
<td>(0-600)</td>
<td>(0-600)</td>
<td>Evacuation on sounders Warning on sounders Activate Beacon Switch off SND/Beacon Switch ON Relays Switch OFF Relays Evacuation on Outputs Warning on Outputs Switch off Output Disable sounders Enable sounders Disable relays Enable relays Disable output</td>
</tr>
<tr>
<td>Panel</td>
<td>-</td>
<td>-</td>
<td>(0-600)</td>
<td>(0-600)</td>
<td>Evacuation on sounders Warning on sounders Activate Beacon Switch off SND/Beacon Switch ON Relays Switch OFF Relays Evacuation on Outputs Warning on Outputs Switch off Output Disable sounders Enable sounders Disable relays Enable relays Disable output</td>
</tr>
</tbody>
</table>
9 - DISABLEMENTS

9.1 DISABLEMENTS ..57

9.2 ZONE DISABLEMENT ..57

9.3 DEVICE DISABLEMENT ..59
9.1 DISABLEMENTS
To aid commissioning and assist routine maintenance checks, various functions of the Nittan evolution 1 fire alarm system can be disabled. The Nittan evolution 1 allows Disablement of Inputs in a zone, Outputs in a zone, a whole zone, or individual devices.

9.2 ZONE DISABLEMENT
When a zone is disabled, the panel will not respond to any fault or fire signals it receives from that zone.

This might be used if the system requires routine maintenance, and the user needs the rest of the system to continue running, but doesn’t want spurious false alarms.

The panel will respond in the usual manner to any events in any non-disabled zones.

Any number of zones can be disabled, but it is good practice to only disable one zone at a time.

A zone can be disabled as follows:

Enter the Engineer or User Password, Press the menu access icon and select the zone Icon (The disabling function is available to engineer & users).

The panel shows the Zone menu

Select the Zone to Disable by pressing the “In” field. The status changes from enabled to Input Disabled.

This would disable all detectors, manual call points, and input interfaces in that zone.

Select further zones in the same way, or Press exit to save.

For further options, press the “In” field again.

The status changes from Input Disabled to Output Disabled.

This would disable all Sounders and Output interfaces in that zone.
For further options, press the “In” field again.

The status changes from Output Disabled to Disabled.

This would disable everything in that zone.

When zones have been disabled, the LCD display changes from SYSTEM NORMAL to Disablement/Test. The screen shows:-

- The number of zones disabled,
- The number of zones with just their inputs disabled.
- The number of zones with just their outputs disabled.
- and the total number of devices in those disabled zones.

The General Disablement LED will be lit and also the zonal disablement LEDs will be lit for any zone with disabled inputs. The zonal disablement LEDs only apply to zones 1 to 16.

Details of the disabled zones can be viewed by pressing the disabled zones icon.

Details of the individual devices disabled can be viewed by pressing the disabled loop devices icon.

To re-enable a zone, use the same procedure, pressing the In field until it shows Enabled.

It cycles through:-
- Disabled
- Input Disabled
- Output Disabled
- Disabled
- Test
- Test + Sounder
- Enabled
9.3 DEVICE DISABLEMENT

Rather than disable an entire zone, it is often useful to just disable one or more input devices or points (detector, call point, or interface) within a zone, especially if they are malfunctioning and likely to cause a false alarm or repeatedly indicate a fault.

Enter the Engineer or User Password, Press the menu access icon, and select the zone icon. (The disabling function is available to engineer & users).

The panel shows the Point menu.

Press on the MODE field for the device to be disabled. Select further devices to disable if necessary, then press Exit to save.

When zones have been disabled, the LCD display changes from SYSTEM NORMAL to Disablement/Test, as shown. The screen shows the number of devices disabled. The General Disablement LED will be lit, but the zonal disablement LEDs will not light, unless all devices in that zone have been disabled.

Details of the individual devices disabled can be viewed by pressing the disabled loop devices icon.

To re-enable a device, use the same procedure, pressing the Mode field until it shows Enabled.

Once a device is disabled, the panel ignores any alarms or faults generated by the device. If all devices in a zone are disabled, the panel will indicate a zone disablement. If subsequently one or more devices are re-enabled then the zone disablement indication will be automatically cancelled. To re-enable a disabled device, repeat the same procedure used for disabling the device, selecting Enable instead of Disable.
10 - TEST MODE

10.1 WHY USE TEST MODE .. 61

10.2 TO PROGRAMME ZONE INTO TEST MODE .. 61
10.1 WHY USE TEST MODE
To aid commissioning and assist routine maintenance check, a non-latching ‘one man test’ facility is available. Test mode can be used either with or without sounder operation, depending on the engineers requirements.

When a detector, manual call point or input unit is triggered on any zone in Test, the Alarm sounders operate for approximately 10 seconds on and then switch off (if selected). The triggered device is automatically reset. The panel will display the tested device on a test alarm screen, with the event highlighted in blue. The device automatically resets from the fire condition, but the LCD indication remains until the panel is manually reset.

If the device is still in the fire condition, e.g. MCP still activated or the analogue value of a detector still above the alarm threshold, the device will be triggered again and the Alarm sounders will operate for a further 10 seconds.

Should an Alarm occur on a zone that is not programmed to test, the Fire Alarm Panel will operate as normal.

10.2 TO PROGRAMME ZONE INTO TEST MODE

Enter the Engineer or User Password, Press the menu access icon, and select the zone Icon. (The disabling function is available to engineer & users).

The panel shows the Zone menu

Select the zone(s) to be tested by clicking on the In Field, until it shows Test

This will give a silent test, with no sounders operating.

If the sounders are required to operate, press the In Field again. It will show Test + Sound.

This will operate all the sounders in that zone for approximately 10 seconds, regardless of the cause and effect programming

When all required zones have been selected, press exit and accept the change. The panel will return to the menu, showing that there is a Disablement or test condition present.
Press the exit icon to leave the menu. The screen will show that there are zones in test.

To view which zones are in test mode, press the zones in test icon.

Proceed to test the devices. The panel will show all test events on a separate test screen. The events will be highlighted blue to

When complete, take the panel out of test mode by selecting the zone icon. Click the “In” field until it shows enabled.

Press exit and save changes in order to return the panel to normal.
11 - NETWORKING

11.1 NETWORKING ... 64
11.2 RING NETWORK .. 64
11.3 BUS NETWORK ... 64
11.4 CONFIGURING THE NETWORK .. 64
11.5 RUNNING THE NETWORK .. 65
11.6 CONFIGURING TCP/IP CONNECTION 65
11.7 CONFIGURING THE CLOUD SETTING 66
11.1 NETWORKING
The Nittan evolution 1 panel has built in network connections, so no additional hardware is needed to network panels together.

Up to 16 control panels (CIEs) can be connected together, i.e. networked. The maximum distance between nodes is 1 km using a screened data cable, or 100m using a standard fireproof cable.

The network can be configured with a ring or bus topology.

11.2 RING NETWORK
In a ring network, each control panel is connected to 2 other control panels to form a ring. This has the same topology as the loops of addressable devices connected to each CIE. This has the advantage that no panels are lost if there is a single break in the network.

11.3 BUS NETWORK
This is similar to a ring network but wired panel to panel without a return connection from last panel to first panel. It could also be referred to as a radial or spur network.

11.4 CONFIGURING THE NETWORK

Enter the engineer menu

Select the Network Menu ![Network Menu Icon] and press the RS485 tab

The panel shows that the network connection is disabled (it’s default state).

Change the mode to Enabled.

Set a node address. Note that each panel on the network must have a separate address.
Repeat the above step for all panels on the network, then press the Add icon \(\rightarrow\) to search and configure the network.

When the search is complete, the panel shows a list of network node addresses seen, and whether the panel sees a connection on Network port A (NET 1), and Network port B (NET 2).

If the panel sees a connection it reports the port as UP. If it does not see a connection, it reports the port as down.

(In this example we have a single panel)

11.5 RUNNING THE NETWORK

On a Nittan evolution 1 panel, running in a network, all events are reported at all panels.

All panels are able to silence & reset the system, when a suitable access code has been entered.

Operation of outputs over the network is determined by the programmed cause & effect. Any input on the network can be programmed to operate any output. The cause & effect is entered at the panel that has the INPUT CAUSE connected.

11.6 CONFIGURING TCP/IP CONNECTION

NOTE: Nittan Portal to support TCP/IP & Cloud is a future Development. Please contact your distributor for further information.

The Nittan evolution panel 1 has a TCP/IP connection that allows the panel to report events to a central server. To do this, First the TCP/IP address must be set.

From the Network Menu, press the TCP/IP tab.

The panel shows that the TCP/IP connection is disabled (it’s default state).

Select DHCP for the LAN to assign the settings, or select manual to enter the settings by hand.

If entering the settings by hand, just type the numbers. The panel will automatically insert the dots.
With only the TCP/IP configured, the panel will sit on a network, but would need 3rd party software on a PC to do anything useful. The cloud tab will need to be configured in order for the panel to link to the remote server.

11.7 CONFIGURING THE CLOUD SETTINGS

NOTE: Nittan Portal to support TCP/IP & Cloud is a future Development. Please contact your distributor for further information.

The Nittan evolution 1 panel has been designed to report events to a central server. This will allow authorised users to view the current status of the panel. The settings are usually set at the factory, but can be configured by the installer if required.

From the Network Menu, press the Cloud tab.

Enter Server and Port details as required. Make a note of the MAC address, as this will be needed to register the panel at the server.

The Mode setting determines whether remote access to the panel is enabled or disabled.

To allow an engineer to interrogate the panel remotely, this should be set to enabled. This is to prevent access to a panel without a responsible person physically at the fire panel.

This setting will time out after a short period of inactivity.
12 - FAULT FINDING

12.1 LOOP WIRING FAULT FINDING ...68
12.2 LOOP CONTENTS FAULT FINDING ..69
12.3 ZONE FAULTS ...69
12.4 POWER SUPPLY FAULTS ...70
12.5 EARTH FAULTS ...71
12.6 SYSTEM FAULT ...72
12.7 PANEL INPUT AND CONVENTIONAL SOUNDER FAULTS ...73
12.8 EVENT LOGS ...74
12.1 LOOP WIRING FAULT FINDING

The Nittan evolution 1 panel will monitor the addressable loop for open or short circuit faults. The panel’s Loop Isolator monitors for both Open and short circuit faults, to the faults are reported as ISOLATOR FAULTS, with a Description. The faults reported are:

<table>
<thead>
<tr>
<th>Fault Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Break in +ve wire</td>
<td>To locate a cable break, re-run the loop search, and check the detailed loop report after the search is complete.</td>
</tr>
<tr>
<td>Break in -ve wire</td>
<td>Use the same method to locate a break. In the example above, the break is between address 150 (which is seen from side A only), and address 152 (which is seen from side B only). (This applies if the loop is addressed sequentially)</td>
</tr>
<tr>
<td>Short circuit on side A of the loop</td>
<td>If the panel reports a loop short side A, then there is a short circuit fault on the loop, somewhere between the panel (side A), and the first device with a short circuit isolator on the loop.</td>
</tr>
<tr>
<td>Short circuit on side B of the loop</td>
<td>If the panel reports a loop short side B, then there is a short circuit fault on the loop, somewhere between the panel (side B), and the last device with a short circuit isolator on the loop.</td>
</tr>
<tr>
<td>A short circuit in the middle of the loop, will usually cause two loop short circuit isolators to activate, and will cause the devices between the isolators to go missing (as they are no longer powered).</td>
<td>The short circuit will be somewhere between the 2 operated SC isolators. Check which addresses are missing.</td>
</tr>
</tbody>
</table>
12.2 LOOP CONTENTS FAULT FINDING

If the loop contents are different to what was expected, then there are two probable causes:

<table>
<thead>
<tr>
<th>Two or more devices may have the same address setting. This is referred to as a DOUBLE ADDRESS FAULT. If this occurs all devices with the same address will answer at the same time. The panel will not be able to understand the answer it receives.</th>
<th>Search the detailed loop report for double addresses. Look for missing addresses in the detailed summary. Missing numbers are likely to be the double addressed ones. Try removing the known device & relearn the loop. If just 2 devices were at that address, the other device will now be seen, and the panel will report its type, which may help reduce the search.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable break</td>
<td>If a system is only wired as a loop, any breaks will be reported, and can be located as described in the previous section. If a system uses spurs, a cable break in the spur will not be seen. Look for missing device addresses in the loop report.</td>
</tr>
<tr>
<td>Reverse Polarity Devices</td>
<td>Some devices are polarity sensitive, so will not be seen if + & - connections are reversed. Look for missing devices in the loop report, and check their</td>
</tr>
</tbody>
</table>

12.3 ZONE FAULTS

There are several reasons for the zone fault LED to light.

<table>
<thead>
<tr>
<th>A device has been removed from that zone.</th>
<th>A device has been changed for one of a different type</th>
</tr>
</thead>
<tbody>
<tr>
<td>There is a Double Address in this zone (see previous section)</td>
<td>There is a Double Address in this zone (see previous section)</td>
</tr>
</tbody>
</table>

Doc: NEU-229-7-1
Issue: 4
Date: 23/05/2016
A device in that zone is communicating a fault condition to the panel.

The fault message indicates whether the interface has detected an open or short circuit fault on its field wiring, or if it has lost its auxiliary power supply input.

12.4 POWER SUPPLY FAULTS

Mains Supply Fault

- **Check If Mains Power is present**
- **Check if there is voltage out of the PSU cage (29.5V DC)**

Battery Removed

- **Check battery fuse.**
- **Check that battery connections are secure.**
- **Check battery voltage (should be around 26-27V for well charged batteries).**
- **Check that the two batteries are connected in SERIES (to give double the voltage of 1 battery on its own).**
- **Check the charger fuse.**

Charger Fault

- **The panel has determined that the power supply is not charging the batteries.**
- **This is likely to be a problem with the Charger PCB. Contact your supplier to arrange a replacement charger PCB**

Battery high impedance fault

- **The panel has measured the battery internal resistance and has determined it is too high.**
- **The batteries will need to be replaced.**
12.5 EARTH FAULTS

An EARTH fault indicates that something is shorting to earth (usually through the cable screen). Disconnect the earth screens one at a time to determine the problem line.

(Note: connecting other equipment, e.g. a mains powered laptop, to the panel can give an earth fault)

The earth fault message will indicate if it is a Positive or Negative voltage shorting to earth.

<table>
<thead>
<tr>
<th>Earth Positive Fault</th>
<th>Earth Negative Fault</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Most Earth faults occur on the Addressable loop. As a first check disconnect all the loop connections, and reset the panel. If no earth fault is reported the fault is on the loop. Locate the fault by splitting the loop in half, connecting one side of the loop at a time, then sub dividing the “bad section”. Look for the cable screen shorting to loop +

If the fault is not on the loop, use a similar method to investigate all other circuits.

Use the same method, but look for shorts to loop -ve

Note that for the on board conventional sounder circuits, in the off condition, both sounder + and sounder – terminals are POSITIVE with respect to earth, so a short circuit to either would give a positive earth fault.

DO NOT DISCONNECT THE MAINS EARTH CONNECTION. THIS WILL CAUSE A PROBLEM WITH THE PANELS OPERATION
12.6 SYSTEM FAULT

A system fault is an abnormal microprocessor running condition due to various unexpected phenomena. This will result in the panel attempting to correct itself. Should this fault occur, the System Fault LED, General Fault LED, General Fault relay and internal fault buzzer will be constantly active. A system fault indication can be cleared by pressing the system fault reset button located underneath the PCB. If the fault does not clear please consult your distributor.

Location of System Fault Reset Button from front of the panel

Viewed from side of the panel

Viewed from the rear of the PCB
12.7 PANEL INPUT AND CONVENTIONAL SOUNDER FAULTS

<table>
<thead>
<tr>
<th>Fault Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCAL INPUT OPEN</td>
<td>- Check the local input has an EOL resistor fitted.</td>
</tr>
<tr>
<td></td>
<td>- Check that the EOL resistor is the correct value (4.7 kΩ).</td>
</tr>
<tr>
<td></td>
<td>- Check that there are no cable breaks or loose connections.</td>
</tr>
<tr>
<td>LOCAL INPUT SHORTED</td>
<td>- Check that there are no cable short circuits on the circuits.</td>
</tr>
<tr>
<td></td>
<td>- Check that the EOL resistor is the correct value (4.7 kΩ).</td>
</tr>
<tr>
<td></td>
<td>- Check that there are no Normally closed switches connected to this circuit.</td>
</tr>
<tr>
<td>LOCAL OUTPUT OPEN</td>
<td>- Check the local Output (Sounder Circuit) has an EOL resistor fitted.</td>
</tr>
<tr>
<td></td>
<td>- Check that the EOL resistor is the correct value (4.7 kΩ).</td>
</tr>
<tr>
<td></td>
<td>- Check that there are no cable breaks or loose connections.</td>
</tr>
<tr>
<td>LOCAL OUTPUT SHORTED</td>
<td>- Check that there are no cable short circuits on the circuits.</td>
</tr>
<tr>
<td></td>
<td>- Check that there are no non-polarised devices connected to the circuit.</td>
</tr>
</tbody>
</table>
12.8 EVENT LOGS

The Nittan evolution 1 event log has a capacity of 4096 events. It stores all faults & alarms that occur on the system.

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Highlight</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faults</td>
<td>YELLOW</td>
<td>The highlighted part gives the time & date and the general fault information. The table shows more detail of the fault. The left hand column shows the event number.</td>
</tr>
<tr>
<td>Alarms</td>
<td>RED</td>
<td>The highlighted part gives the time & date and the Type of detector signalling alarm. The table shows more detail of the Alarm (Address, Device text label, zone, zone text label). The left hand column shows the event number.</td>
</tr>
<tr>
<td>Test events</td>
<td>GREEN</td>
<td>The highlighted part gives the time & date and the Type of detector signalling alarm. The table shows more detail of the Alarm (Address, Device text label, zone, zone text label). The left hand column shows the event number.</td>
</tr>
</tbody>
</table>

When viewing the event log from the engineer menu, there is an option to erase the event log by pressing the delete icon.

The panel will ask to confirm this action. Press tick to delete, or cancel to leave the log in the panel.

When viewed from the user menu, there is no delete option.
13 - STANDBY BATTERY REQUIREMENTS

13.1 STANDBY BATTERY REQUIREMENTS ..76
13.2 STANDBY BATTERY CALCULATION ...76
13.3 PANEL & DEVICE LOOP CALCULATOR ...76
13.1 STANDBY BATTERY REQUIREMENTS

It is the responsibility of the system designer to choose batteries that will give the required system standby time. The following pages give the information needed to help determine the minimum battery requirements.

13.2 STANDBY BATTERY CALCULATION

In order to calculate the standby battery size required, the following formula can be used:

Battery Size (Standby time in Amp Hours) = 1.25 x \((T_{SBY} \times I_{SBY}) + (D \times T_{ALM} \times I_{ALM}) \)

Where:
- \(T_{ALM} \) = Maximum time in hours required for the alarm (½ hour is most common time)
- \(I_{ALM} \) = Total Alarm Current in amps (Includes panel current, loop current, Aux 28V current)
- \(T_{SBY} \) = Standby time in hours for the system after mains failure (normally 24, 48 or 72 hr)
- \(I_{SBY} \) = Quiescent current in amps (includes control panel in fault condition [because of mains failure], Loop Current in normal condition, AUX 28V current)
- \(D \) = Battery de-rating factor (assumed as 2 if no derating factor available from Battery manufacturer). This allows for the inefficiency of the battery under high load conditions.

13.3 PANEL & DEVICE LOOP CALCULATOR

It is the responsibility of the system designer to ensure the Loop loading is within the specified limits. Nittan Europe Ltd provide a Loop Calculator Program, screen image below, downloadable from nittan.co.uk, to assist with this. The currents calculated with this program can be used to help calculate the standby battery requirements.

![Loop Calculator Image](image-url)
14 - CE INFORMATION

<table>
<thead>
<tr>
<th>CE</th>
<th>0359</th>
</tr>
</thead>
</table>

Nittan Europe Limited.
Hipley Street, Old Woking, Surrey. GU22 9LQ

<table>
<thead>
<tr>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>0359-CPR-00484</td>
</tr>
</tbody>
</table>

Control and indicating equipment for fire detection and fire
alarm systems for buildings

- Nittan Evolution
 EV1

Provided options:

- Output to fire alarm devices
- Delays to outputs
- Fault signals from points
- Disablement of addressable points
- Test condition

Other Technical Data: See Doc: "Nittan Evolution Product file" held by the manufacturer
15 - DOCUMENT MODIFICATION HISTORY

<table>
<thead>
<tr>
<th>Issue</th>
<th>Date</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>09/01/2015</td>
<td>First Draft</td>
</tr>
</tbody>
</table>
| 1 | 27/11/2015 | Added new Cause & Effect screens (Destination panel screen)
Mentioned panel is for indoor use only
Added charger fault picture
Added TCP/IP configuration screen
Deleted Tone A / Tone B selection from device option screen (not used)
Added Turn Delay on / off instructions
Updated zone disablement icons
Added System Fault Reset
Corrected minimum working voltage to 19.5V
Added note that LED flash on by default |
| 2 | 05/02/2016 | Change Evolution 1 to evolution 1 throughout.
Para 1.4 - Amended End of Life statement for WEEE
Para 2.5 - Amend Image
Para 4.1 - Second Paragraph. Note for power limitation.
Para 7.8 - Add word “Heat” for EV-PH.
Para 7.8 - Add “with visual indicator” for EV-AV2.
Para 7.8 - Add products EV-DPH-A2R & EV-DPH-CS products
Para 7.8 - Add product EV-SCM
Para 7.8 - Correct image for EV-PS. Previously EV-P image.
Para 13.1 & 13.2 - Rearranged
Para 13.3 - Added reference to Nittan Loop Calculator
Para 13.4 - Add EV-DPH
Simplified Battery calculation & added battery derating factor
Corrected Accessing the panel section
Corrected Fire relay information
Added ferrite tube to Mains Connection Diagram |
| 3 | 16/3/2016 | Removed incorrect 17Ah Battery reference. Added Battery manufacturer’s Part No. |
| 4 | 23/5/2016 |
- Updated screen photos for clearer images
- Changed front page photo to show correct label version
- Section 5.6 add a note: “The clear plastic cover must always be refitted over the mains terminals after the mains cables are connected”.
- Section 5.7 Connecting Battery – modify the image on Page 26 to show the battery with fused in link.
- Section 6.4.1 Soft Addressing – add note: “Complete programming kit, with Lead and Adaptor is available”.
- Section 11.6.,11.7 TCP/IP & Cloud – add note: “Nittan Portal to support TCP/IP & Cloud is a future Development” |